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Abstract
The mathematical structure of the reflection coefficients for the one-
dimensional Fokker–Planck equation is studied. A new formalism using
differential operators is introduced and applied to the analysis in the high-
and low-energy regions. Formulae for high-energy and low-energy expansions
are derived, and expressions for the coefficients of the expansion, as well as the
remainder terms, are obtained for general forms of the potential. Conditions
for the validity of these expansions are discussed on the basis of the analysis
of the remainder terms.

PACS numbers: 03.65.Nk, 02.30.Hq, 02.50.Ey

1. Introduction

It is well known that the steady-state Schrödinger equation

− d2

dx2
ψ(x) + VS(x)ψ(x) = k2ψ(x) (1.1)

is equivalent to the Fokker–Planck eigenvalue equation [1]

− d2

dx2
φ(x) +

d

dx
[f (x)φ(x)] = k2φ(x). (1.2)

The time-dependent Fokker–Planck equation corresponding to (1.2) describes diffusion in a
potential V (x), where

f (x) = −1

2

d

dx
V (x). (1.3)

The correspondence between (1.1) and (1.2) is given by

ψ(x) = eV (x)/2φ(x), VS(x) = f ′(x) + f 2(x). (1.4)
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We define the transmission and reflection coefficients for a finite interval (x1, x2) as
follows. Let V̄ (x) be the function which is identical with V (x) inside the interval (x1, x2) and
constant outside:

V̄ (x) =



V (x1) x � x1

V (x) x1 < x < x2

V (x2) x2 � x.

(1.5)

We define f̄ (x) ≡ −(1/2)(d/dx)V̄ (x) just like (1.3), and consider equation (1.2) with f (x)

replaced by f̄ (x). (In general, delta functions appear at x = x1 and x = x2 on the left-hand
side of this equation.) Since f̄ (x) = 0 outside (x1, x2), this equation has two independent
solutions of the form

ψ1(x) =
{

eik(x−x1) + Rl(x2, x1; k) e−ik(x−x1) x < x1

τ(x2, x1; k) eik(x−x2) x > x2,
(1.6a)

ψ2(x) =
{

τ(x2, x1; k) e−ik(x−x1) x < x1

e−ik(x−x2) + Rr(x2, x1; k) eik(x−x2) x > x2.
(1.6b)

This defines the transmission coefficient τ , the right reflection coefficient Rr and the left
reflection coefficient Rl for the interval (x1, x2). Many properties of equation (1.2) or
equation (1.1) can be known from these scattering coefficients.

Our object of study in this paper is the reflection coefficients for semi-infinite intervals,
Rr(x,−∞; k) and Rl(∞, x; k), which play particularly important roles in one-dimensional
problems. When considering a problem on the entire line in one dimension, −∞ < x < +∞,
we are obliged to deal with semi-infinite intervals. For example, the Green function is
expressed in terms Rr(x,−∞; k) and Rl(∞, x; k). Let GS(x, x ′; k) be the Green function for
the Schrödinger equation (1.1), satisfying[

∂2

∂x2
− VS(x) + k2

]
GS(x, x ′; k) = δ(x − x ′) (1.7)

with the boundary condition GS(x, x ′; k + iε) → 0 as |x − x ′| → ∞. (Here k is real and ε is
a positive infinitesimal.) This Green function can be expressed as1

GS(x, x ′; k) = −i

2k
√

[1 − S(x; k)][1 − S(x ′; k)]
exp

[
ik(x − x ′) − ik

∫ x

x ′
S(z; k) dz

]
(1.8)

for x � x ′, where

S(x; k) ≡ Rl(∞, x; k)

1 + Rl(∞, x; k)
+

Rr(x,−∞; k)

1 + Rr(x,−∞; k)
. (1.9)

Therefore, analytic properties of the Green function for the Schrödinger equation can be known
by studying Rr(x,−∞; k) and Rl(∞, x; k) for the Fokker–Planck equation.

In this paper we investigate the behaviour of these reflection coefficients in high-energy
(large-|k|) and low-energy (small-|k|) regions. We shall deal only with Rr(x,−∞; k) since
Rl has the same structure as Rr . We assume that k is, in general, a complex number with
Im k � 0.

The analysis of scattering coefficients for the Schrödinger equation has a very long
history [2–4]. Even recently, the high- and low-energy asymptotic expansions of the reflection
coefficients and related quantities continue to be studied actively by many researchers [5–10].

1 This expression, and similar expressions for the Green function, will be discussed in another paper.
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On the other hand, although the equivalence between the Schrödinger equation and the Fokker–
Planck equations has been well known for a long time, little attention has been paid to the
reflection coefficients for the Fokker–Planck equation. Actually, the structure of the reflection
coefficients is more transparent for the Fokker–Planck equation than for the Schrödinger
equation. By dealing with the Fokker–Planck equation rather than the Schrödinger equation,
we can carry out the analysis in a more systematical way, as we shall see in this paper.

Conventional methods used for the Schrödinger equation mostly involve estimating a
solution of an integral equation. In this paper we take a totally different approach. It is a
characteristic of the reflection coefficients (and related quantities such as the Weyl m-function)
that they satisfy a nonlinear differential equation of Riccati type. In our method, the Riccati
equation is transformed into a linear partial differential equation for two variables, and the
derivation of the asymptotic expansions is reduced to a manipulation of linear operators. In
this method, the high-energy expansion and the low-energy expansion can be treated on an
equal footing.

In studying an asymptotic expansion, it is essential to estimate the remainder term. In
conventional methods, this procedure often calls for a severe restriction on the potential,
requiring it to belong to a certain limited class such as L1, L2, or the Faddeev class. In our
method, the remainder term is expressed in a fairly compact form which is valid even if the
potential is infinite at x = ±∞. As a result, this method is applicable to a much larger class
of potentials.

The potential V (x) is a real function of x. (In this paper we always use the term ‘potential’
to mean the Fokker–Planck potential V (x), not the Schrödinger potential VS(x).) Since we
shall deal only with Rr(x,−∞; k), the potential need not be defined on the entire line. We
assume that V (x) is defined in −∞ < x < xmax with some xmax, and that V (x) takes a finite
value for each x in this region. (For example, xmax = 0 for V (x) = log |x|. If the potential is
defined everywhere, then xmax = +∞.)

We shall allow V (x) to be either finite or infinite in the limit x → −∞. The only
requirement we impose on the asymptotic behaviour of the potential as x → −∞ is that
the function f (x) (defined by (1.3)) should either converge smoothly or diverge smoothly in
the following sense: if f (−∞) is finite, we assume that all the derivatives of f (x) vanish
in the limit x → −∞, and that they are all monotone for sufficiently large (−x). (In fact,
this smoothness condition can be relaxed in many cases, but we shall assume this rather strict
condition in order to simplify the explanation.) If f (−∞) is either +∞ or −∞, then 1/f (x)

and all its derivatives are assumed to vanish as x → −∞. We do not deal with potentials that
show oscillatory behaviour at infinity. Other conditions on V (x) will be specified when they
become necessary.

In our formalism we deal with the scattering coefficients in a generalized form, which
will be defined in the next section. We set up a general framework in section 3, and derive the
formulae for low- and high-energy expansions in sections 4 and 5, respectively.

2. Generalized scattering coefficients

Let ξ be a real variable, −1 < ξ < 1. We define

R̄r (x, y; ξ ; k) ≡ Rr(x, y; k) − ξ

1 − ξRr(x, y; k)
, (2.1a)

R̄l(x, y; ξ ; k) ≡ Rl(x, y; k) +
ξτ 2(x, y; k)

1 − ξRr(x, y; k)
, (2.1b)
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τ̄ (x, y; ξ ; k) ≡
√

1 − ξ 2τ(x, y; k)

1 − ξRr(x, y; k)
. (2.1c)

(See [11] for the background of these definitions2. In fact, they are equivalent to the scattering
coefficients for a potential that has a discontinuity at the right endpoint of the interval.) Since
τ(x, x; k) = 1 and Rr(x, x; k) = Rl(x, x; k) = 0, we have

τ̄ (x, x; ξ ; k) =
√

1 − ξ 2, R̄r (x, x; ξ ; k) = −ξ, R̄l(x, x; ξ ; k) = ξ. (2.2)

Sometimes it is convenient to define W by

ξ ≡ tanh
W − V (x)

2
or W ≡ log

1 + ξ

1 − ξ
+ V (x), (2.3)

and take {x, y,W, k}, rather than {x, y, ξ, k}, as independent variables. We shall specify the
set of independent variables by writing the argument ξ or W explicitly. (We shall often omit
to write the argument k.) The original scattering coefficients τ, Rr, Rl are recovered from
τ̄ , R̄r , R̄l by setting ξ = 0 or W = V (x). For k = 0, we have [11]

τ̄ (x, y;W ; k = 0) = sech
W − V (y)

2
, (2.4a)

R̄r (x, y;W ; k = 0) = −R̄l(x, y;W ; k = 0) = − tanh
W − V (y)

2
. (2.4b)

3. Basic formalism

We consider the set of two-variable functions g(x, ξ) which are defined in −∞ < x < xmax

and −1 < ξ < 1, and which are analytic with respect to ξ in this interval. The generalized
reflection coefficient R̄r (x,−∞; ξ) is one of such functions. From time to time we also regard
them as functions of x and W , with W defined by (2.3). In that case the functions g(x,W) are
analytic in −∞ < W < +∞.

Let us define the operators A and B acting on these functions as

Ag(x, ξ) ≡
[

∂

∂x
+ f (x)(1 − ξ 2)

∂

∂ξ

]
g(x, ξ), (3.1)

Bg(x, ξ) ≡
(

1 + ξ 2

1 − ξ 2
+ ξ

∂

∂ξ

)
g(x, ξ) = (1 − ξ 2)

∂

∂ξ

ξ

1 − ξ 2
g(x, ξ). (3.2)

If we take {x,W } as independent variables instead of {x, ξ}, the above definitions read

Ag(x,W) ≡ ∂

∂x
g(x,W), (3.3)

Bg(x,W) ≡
(

cosh[W − V (x)] + sinh[W − V (x)]
∂

∂W

)
g(x,W). (3.4)

It can be shown that R̄r (x,−∞; ξ) satisfies the partial differential equation [11]

(A − 2ikB)R̄r (x,−∞; ξ) = 4ik
ξ

1 − ξ 2
. (3.5)

2 In [11], these quantities are defined in a more generalized form, with one more additional variable ξ ′. The R̄r , R̄l

and τ̄ in the present paper correspond to the ones with ξ ′ = 0.
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(There is an algebraic background for this equation; see [11] for details.) We shall use this
equation as a basis for our analysis.

Let �
[V ]
k denote the set of functions g(x, ξ) which are continuous and piecewise

differentiable with respect to x, analytic with respect to ξ , and which satisfy

lim
z→−∞

τ̄ 2(x, z; ξ)

1 − R̄2
l (x, z; ξ)

g(z, R̄l(x, z; ξ)) = 0 (3.6)

for any x in −∞ < x < xmax. (Whether a given function g(x, ξ) satisfies (3.6) or not can be
decided by using the asymptotic forms of τ̄ and R̄l shown in appendix A.) If we restrict the
domain of A − 2ikB to �

[V ]
k , then it has an inverse given by

1

A − 2ikB
g(x, ξ) =

∫ x

−∞

τ̄ 2(x, z; ξ)

1 − R̄2
l (x, z; ξ)

g(z, R̄l(x, z; ξ)) dz. (3.7)

(The proof is given in appendix B.) In other words, for any g(x, ξ) belonging to �
[V ]
k , the

operator (A − 2ikB)−1 given by (3.7) satisfies

1

A − 2ikB
(A − 2ikB)g(x, ξ) = g(x, ξ). (3.8)

When {x,W } are used as independent variables, equations (3.7) and (3.6) read

1

A − 2ikB
g(x,W) =

∫ x

−∞

τ̄ 2(x, z;W)

1 − R̄2
l (x, z;W)

g

(
z, V (z) + log

1 + R̄l(x, z;W)

1 − R̄l(x, z;W)

)
dz, (3.9)

and

lim
z→−∞

τ̄ 2(x, z;W)

1 − R̄2
l (x, z;W)

g
(
z, V (z) + log

1 + R̄l(x, z;W)

1 − R̄l(x, z;W)

)
= 0. (3.10)

Condition (3.10) takes a simple form for k = 0; substituting (2.4) we obtain

lim
x→−∞ g(x,W) = 0. (3.11)

We may note that (3.11) is not satisfied for g(x,W) = R̄r (x,−∞;W), since

R̄r (x,−∞;W ; k = 0) = tanh
V (−∞) − W

2
. (3.12)

(See (2.4b).) If we take g = R̄r + ξ instead of g = R̄r , then (3.11) is satisfied. (It is obvious
that ξ = tanh{[W − V (x)]/2} cancels the right-hand side of (3.12) in the limit x → −∞.)
More generally, we can show that

R̄r (x,−∞; ξ ; k) + ξ ∈ �
[V ]
k (3.13)

for any k in the region Im k � 0. (See appendix C for a proof.)
Using (A − 2ikB)ξ = (1 − ξ 2)f (x) − 4ikξ/(1 − ξ 2), we rewrite (3.5) as

(A − 2ikB)[R̄r (x,−∞; ξ) + ξ ] = (1 − ξ 2)f (x). (3.14)

Since R̄r + ξ ∈ �
[V ]
k , we can apply (A − 2ikB)−1 to both sides of (3.14) and obtain

R̄r (x,−∞; ξ) = −ξ +
1

A − 2ikB
(1 − ξ 2)f (x). (3.15)

With (3.7), this expression reads

R̄r (x,−∞; ξ) = −ξ +
∫ x

−∞
dz f (z)τ̄ 2(x, z; ξ). (3.16)

Equation (3.15) is the basic expression for R̄r . We can derive from it expansions in powers of
k and 1/k by a simple manipulation of operators, as we shall now see.
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From (3.3) we can see that the inverse of A is given by

A−1g(x,W) =
∫ x

−∞
g(z,W) dz. (3.17)

Obviously A−1Ag = g holds provided that g satisfies condition (3.11). We can also derive
(3.17) from (3.7) by setting k = 0 and using (2.4). The inverse of B is obtained form the last
expression of (3.2) as

B−1g(x, ξ) = 1 − ξ 2

ξ

∫ ξ

0

1

1 − ξ 2
g(x, ξ) dξ. (3.18)

We can easily see that B−1Bg(x, ξ) = g(x, ξ) holds as long as limξ→0 ξg(x, ξ) = 0. Since
g(x, ξ) is assumed to be analytic in −1 < ξ < 1, this condition is automatically satisfied.

Let us define

L ≡ 2A−1B, L−1 = 1
2B

−1A. (3.19)

For an arbitrary positive integer N, we can express (A − 2ikB)−1 as

1

A − 2ikB
= [1 + ikL + (ik)2L2 + · · · + (ik)NLN ]A−1 + (ik)N+1 1

A − 2ikB
ALN+1A−1,

(3.20a)

and
1

A − 2ikB
= − 1

2ik

[
1 +

1

ik
L−1 +

1

(ik)2
(L−1)2 + · · · +

1

(ik)N−1
(L−1)N−1

]
B−1

+
1

(ik)N

1

A − 2ikB
B(L−1)NB−1. (3.20b)

The expansions of R̄r are obtained by substituting these expressions into (3.15).

4. Low-energy expansion

Let us first introduce some notation for integrals that will appear in the expansion. We define,
for n = 1, 2, 3, . . . and −∞ � a � b � ∞,

[s1, s2, . . . , sn]ba ≡
∫ b

a

dz1

∫ b

z1

dz2

∫ b

z2

dz3 · · ·
∫ b

zn−1

dzn exp


 n∑

j=1

sjV (zj )


 , (4.1)

where each sj is either +1 or −1. When V (−∞) = V0 �= ±∞, we use the notation

(±, s2, s3, . . . , sn]x−∞ ≡ eV0 [−1, s2, s3, . . . , sn]x−∞ − e−V0 [+1, s2, s3, . . . , sn]x−∞

= 2
∫ x

−∞
dz1

∫ x

z1

dz2 · · ·
∫ x

zn−1

dzn sinh[V0 − V (z1)] exp


 n∑

j=2

sjV (zj )


 . (4.2)

Substituting (3.20a) into (3.15) yields

R̄r (x,−∞) = r̄0 + ikr̄1 + (ik)2r̄2 + · · · + (ik)N r̄N + ρ̄N , (4.3)

where

r̄0 ≡ A−1(1 − ξ 2)f (x) − ξ, r̄n ≡ Ln(r̄0 + ξ) (n � 1), (4.4)

ρ̄N ≡ (ik)N+1 1

A − 2ikB
Ar̄N+1. (4.5)
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The first expression of (4.4) can be calculated by using (3.17) as

r̄0 =
∫ x

−∞
sech2 W − V (z)

2
f (z) dz − ξ = −tanh

W − V (−∞)

2
, (4.6)

which agrees with (3.12). This means, according to the behaviour of V (x) as x → −∞,

r̄0 = ±1, V (−∞) = ±∞,

= − tanh W−V0
2 , V (−∞) = V0. (4.7)

From now on, we take {x,W } as independent variables. The second expression of (4.4) is
written in terms of W as

r̄n(x,W) = Ln

(
r̄0 + tanh

W − V (x)

2

)
(n � 1), (4.8)

with r̄0 given by (4.7). As can be seen from (3.4) and (3.17), the operator L acts as

Lg(x,W) =
∫ x

−∞

(
e−V (z)Ĵ (2)

+ + eV (z)Ĵ (2)
−
)
g(z,W) dz, (4.9)

where we have defined the operators

Ĵ (2)
+ ≡ eW

(
1 +

∂

∂W

)
, Ĵ (2)

− ≡ e−W

(
1 − ∂

∂W

)
. (4.10)

The right-hand side of (4.8) can be calculated by carrying out the integration of (4.9) repeatedly.
The result is expressed in terms of the integrals (4.1) and (4.2):

r̄n =
∑

{s1,...,sn−1}
C+

s1,s2,...,sn−1
(W)[−1, s1, s2, . . . , sn−1]x−∞, V (−∞) = +∞,

=
∑

{s1,...,sn−1}
C−

s1,s2,...,sn−1
(W)[+1, s1, s2, . . . , sn−1]x−∞, V (−∞) = −∞,

=
∑

{s1,...,sn−1}
Ds1,s2,...,sn−1(W)(±, s1, s2, . . . , sn−1]x−∞, V (−∞) = V0,

(4.11)

where

C+
s1,s2,...,sn−1

(W) ≡ 2Ĵ (2)
−sn−1

· · · Ĵ (2)
−s2

Ĵ (2)
−s1

eW, (4.12a)

C−
s1,s2,...,sn−1

(W) ≡ −2Ĵ (2)
−sn−1

· · · Ĵ (2)
−s2

Ĵ (2)
−s1

e−W, (4.12b)

Ds1,s2,...,sn−1(W) ≡ 1
2 Ĵ

(2)
−sn−1

· · · Ĵ (2)
−s2

Ĵ (2)
−s1

sech2 W−V0
2 . (4.12c)

The sums in (4.11) are over s1 = ±1, s2 = ±1, . . . , sn−1 = ±1. In (4.12), the symbol Ĵ (2)
−si

stands for Ĵ (2)
− and Ĵ (2)

+ for si = +1 and si = −1, respectively. More explicit expressions of
C± and D are given in appendix D. Using (3.9), we can write (4.5) as

ρ̄N = (ik)N+1
∫ x

−∞

τ̄ 2(x, z)

1 − R̄2
l (x, z)

qN+1

(
z, V (z) + log

1 + R̄l(x, z)

1 − R̄l(x, z)

)
dz, (4.13)

qn(x,W) ≡ ∂

∂x
r̄n(x,W). (4.14)

Explicit expressions of ρ̄n for general n are shown in appendix D.
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We need to be careful about the domain of the operator on the right-hand side of (3.20a).
First, since L is an unbounded operator, it is necessary to check that the right-hand side of
(4.8) is finite for each n. It can be shown [12] that all the coefficients r̄n given by (4.11) are
finite if

V (−∞) = ±∞, lim
x→−∞

log |x|
V (x)

= 0, (4.15a)

or

V (−∞) = V0, lim
x→−∞ |x|n[V (x) − V0] = 0 for any n. (4.15b)

Second, for the right-hand side of (4.5) to make sense, the function Ar̄N+1(x,W) must lie in
the domain of (A − 2ikB)−1. As shown in appendix E, this requirement, too, is satisfied if
either (4.15a) or (4.15b) holds. Aside from these two points, there is no problem in (4.3).
Expression (4.3) is correct for any nonnegative integer N as long as the potential satisfies either
(4.15a) or (4.15b).

If the remainder term satisfies

lim
k→0

ρ̄N

kN
= 0 (4.16)

for any N, then (4.3) gives the asymptotic expansion

R̄r (x,−∞) = r̄0 + ikr̄1 + (ik)2r̄2 + (ik)3r̄3 + · · · . (4.17)

(In this paper we use the term ‘asymptotic’ in a broader sense, including the convergent cases.)
The expansion of the original Rr is obtained from (4.17) by setting W = V (x):

Rr(x,−∞) = r0 + ikr1 + (ik)2r2 + (ik)3r3 + · · · , (4.18)

where rn(x) ≡ r̄n(x,W = V (x)). The explicit forms of the first few coefficients are

r1 = 2 eV (x)[−]x−∞, r2 = 4 e2V (x)[−−]x−∞,
(4.19a)

r3 = 12 e3V (x)[− − −]x−∞ − 4 eV (x)[− − +]x−∞, for V (−∞) = +∞,

r1 = −2 e−V (x)[+]x−∞, r2 = −4 e−2V (x)[+ +]x−∞,
(4.19b)

r3 = −12 e−3V (x)[+ + +]x−∞ + 4 e−V (x)[+ + −]x−∞, for V (−∞) = −∞,

r1 = 1
2 sech2 V (x)−V0

2 (±]x−∞,

r2 = 1
2 sech3 V (x)−V0

2

{
e[V0+V (x)]/2(±−]x−∞ + e−[V0+V (x)]/2(± +]x−∞

}
, (4.19c)

for V (−∞) = V0.

Here we have written, for simplicity, [− − +]x−∞ etc. in place of [−1,−1, +1]x−∞ etc.
It remains for us to study whether (4.16) holds or not. If we assume that

lim
k→0

1

A − 2ikB
g = A−1g, (4.20)

then from (4.5) it follows that

lim
k→0

1

(ik)N+1
ρ̄N = lim

k→0

1

A − 2ikB
Ar̄N+1 = A−1Ar̄N+1 = r̄N+1, (4.21)

and so (4.16) holds as long as r̄N+1 is finite. However, since the limit and the integral are not
necessarily interchangeable, there is no guarantee for (4.20). We need to check whether the
second equality of (4.21) really holds. This can be done by using the expressions (D.4) for
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the remainder term given in appendix D. It is shown in appendix F that (4.21) is indeed true
as long as r̄N+1 is finite. Therefore, the asymptotic expansion (4.17) is valid if r̄n is finite
for any n, i.e., if (4.15a) or (4.15b) is satisfied. In other words, the reflection coefficient Rr

can be asymptotically expanded in form (4.18) if V (x) tends to infinity more rapidly than
logarithmically or converges to V0 more rapidly than any power of x as x → −∞.

Finally, let us comment on the convergence property of the series (4.18). Here we
omit the explanation, but it can be shown that the power series (4.18) has a nonzero radius
of convergence if f (−∞) �= 0, i.e., if V (x) diverges linearly or faster as x → −∞. If
V (−∞) = V0 is finite, (4.18) is convergent for small |k| provided that V (x) tends to V0

exponentially or faster as x → −∞. (See example 4 of section 7.)
If V (x) diverges more slowly than |x| and more rapidly than log |x|, or if V (x) converges

to V0 slower than exponentially and faster than any power of |x|, then the series (4.18) is
asymptotic but divergent. In such cases Rr(k) is essentially singular at k = 0. (See example 6
of section 7.)

If V (x) diverges logarithmically or more slowly, or if V (x) tends to V0 with a power law
or more slowly, then the small-k behaviour of Rr cannot be expressed as an asymptotic series
of the form (4.18). (See example 7 of section 7. The Schrödinger potentials studied by Klaus
in [13] correspond to the marginal case.)

5. High-energy expansion

Substituting (3.20b) into (3.15), we obtain

R̄r (x,−∞) = c̄0 +
1

2ik
c̄1 +

1

(2ik)2
c̄2 + · · · +

1

(2ik)N
c̄N + δ̄N , (5.1)

where

c̄0 ≡ −ξ, c̄n ≡ −(2L−1)n−1(1 − ξ 2)f (x) (n � 1), (5.2)

δ̄N = −1

(2ik)N

1

A − 2ikB
Bc̄N+1. (5.3)

(Here we used B−1(1 − ξ 2)f (x) = (1 − ξ 2)f (x).) From (3.1) and (3.18) we have

L−1g(x, ξ) = 1 − ξ 2

2ξ

∫ ξ

0

[
1

1 − ξ 2

∂

∂x
+ f (x)

∂

∂ξ

]
g(x, ξ) dξ. (5.4)

To calculate the c̄n, it is convenient to define

c̃n(x, ξ) ≡ c̄n(x, ξ)

1 − ξ 2
(n � 1), (5.5)

and rewrite the second equation of (5.2) in form

c̃n = −Mn−1f, M ≡ 2

1 − ξ 2
L−1(1 − ξ 2). (5.6)

The operator M acts as

Mg(x, ξ) = f (x)

[
g(x, ξ) − g(x, 0)

ξ
− ξg(x, ξ)

]
+

1

ξ

∫ ξ

0

∂

∂x
g(x, ξ) dξ. (5.7)

Using (5.7) successively in the first equation of (5.6), we obtain

c̃1 = −f, c̃2 = −f ′ + f 2ξ, c̃3 = −f ′′ + f 3 + 2ff ′ξ − f 3ξ 2,
(5.8)

c̃4 = −f ′′′ + 5f 2f ′ − (2f 4 − f ′2 − 2ff ′′)ξ − 3f 2f ′ξ 2 + f 4ξ 3, etc.
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The c̃n are (n − 1) th order polynomials in ξ . The c̄n are obtained as c̄n = (1 − ξ 2)c̃n.
Using (3.7), expression (5.3) for the remainder term can be rewritten as

δ̄N = 1

(2ik)N

∫ x

−∞
τ̄ 2(x, z)KN(z, R̄l(x, z)) dz, (5.9)

Kn(x, ξ) ≡ −
(

1 + ξ
∂

∂ξ

)
c̃n+1(x, ξ). (5.10)

Expression (5.1) makes sense if and only if the c̄n and the δ̄n given by (5.2) and (5.3) are
finite. We can easily see that c̄n contains derivatives of f up to f (n−1). So c̄n is finite if f (x) is
(n− 1)-times differentiable. We can also show that (5.3) makes sense and is finite if f (N−1)(x)

is continuous and piecewise differentiable. (See appendix E.) Therefore, expression (5.1) is
correct provided that f (x) is (N− 1)-times continuously differentiable and that f (N−1)(x) is
piecewise differentiable.

The expansion of the original Rr is obtained from (5.1) by setting ξ = 0:

Rr(x,−∞; k) = 1

2ik
c1(x) +

1

(2ik)2
c2(x) + · · · +

1

(2ik)N
cN(x) + δN(x, k), (5.11)

where cn(x) ≡ c̄n(x, ξ = 0) = c̃n(x, ξ = 0). From (5.8) we find

c1 = −f, c2 = −f ′, c3 = −f ′′ + f 3, c4 = −f ′′′ + 5f 2f ′, etc. (5.12)

The δN in (5.11) is obtained from (5.9) by replacing τ̄ and R̄l with τ and Rl :

δN(x, k) = 1

(2ik)N

∫ x

−∞
τ 2(x, z; k)KN (z, Rl(x, z; k)) dz. (5.13)

If this remainder term satisfies

lim
|k|→∞

kNδN(x, k) = 0, (5.14)

then (5.11) can be written as

Rr(x,−∞; k) = 1

2ik
c1(x) +

1

(2ik)2
c2(x) + · · · +

1

(2ik)N
cN(x) + o(1/|k|N). (5.15)

If (5.14) holds for any N, then we have the asymptotic expansion

Rr(x,−∞; k) = 1

2ik
c1 +

1

(2ik)2
c2 +

1

(2ik)3
c3 +

1

(2ik)4
c4 + · · · . (5.16)

In the next section we shall study the conditions for (5.14) to hold. (Note that (5.14) is
equivalent to lim|k|→∞ kN δ̄N(x, k) = 0, as is obvious from the definition of R̄r .)

6. Validity of (5.14)

The condition for the validity of (5.14) differs depending on the way how we let |k| go to
infinity. We consider the following three ways of taking this limit:

(i) |k| → ∞ with fixed arg k, 0 < arg k < π ,
(ii) |k| → ∞ with fixed Im k > 0,

(iii) |k| → ∞ with Im k = 0 (i.e., arg k = 0 or π ).

In this section we shall show that:

• In case (i), equation (5.14) holds for any f (x) as long as f (N−1)(x) is continuous and
piecewise differentiable.
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• In case (ii), equation (5.14) holds if f (N−1)(x) is continuous and piecewise differentiable,
and if f (x) does not diverge exponentially or faster as x → −∞.

• In case (iii), equation (5.14) holds if f (N−1)(x) is continuous and piecewise differentiable,
and if f (−∞) is finite.

(It is always assumed that f (x) satisfies the conditions stated in the introduction. Recall that
(5.13) is well defined if f (N−1) is continuous and piecewise differentiable.)

Let us assume that f (x) is continuous. When both x and y are finite, we can easily show,
for Im k � 0, that τ(x, y; k) and Rl(x, y; k) have the following properties:

τ(x, y; k) = eik(x−y)[1 + O(1/|k|)], Rl(x, y; k) = O(1/|k|) as |k| → ∞, (6.1)

|τ(x, y; k)| � e−Im k(x−y), |Rl(x, y; k)| � 1. (6.2)

(See, for example, [14] and references therein.) We shall use (6.1) and (6.2) in our proof.
Since Kn(x, ξ) is an nth order polynomial in ξ , we may write

Kn(x, ξ) ≡
n∑

m=0

ξmhnm(x), (6.3)

where hnm are polynomials in f and its derivatives. Their explicit forms are

h00 = f, h10 = f ′, h11 = −2f 2, h20 = f ′′ − f 3, h21 = −4ff ′, h22 = 3f 3,
(6.4)

h30 = f ′′′ − 5f 2f ′, h31 = 4f 4 − 2f ′2 − 4ff ′′, h32 = 9f 2f ′, h33 = −4f 4.

Obviously (5.14) is satisfied if, for any m � N ,

lim
|k|→∞

∫ x

−∞
τ 2(x, z; k)Rm

l (x, z : k)hNm(z) dz = 0. (6.5)

Now let us show that (6.5) holds for any m � N under the conditions listed above.

(i) |k| → ∞ with fixed arg k (0 < arg k < π).
In this case, both τ(x, z; k) and Rl(x, z; k) vanish as |k| → ∞, as can be seen from (6.1). So,
if it is possible to interchange the limit and the integral as

lim
|k|→∞

∫ x

−∞
τ 2Rm

l hNm dz =
∫ x

−∞
lim

|k|→∞
τ 2Rm

l hNm dz (6.6)

then (6.5) holds, since the right-hand side of (6.6) is obviously zero. Since |Rl| � 1,
equation (6.6) holds if there exist a k-independent real function A(z) and a real number
a such that |τ 2(x, z; k)| � A(z) for |k| � a, and

∫ x

−∞ A(z)|hNm(z)| dz < ∞. It is
always possible to find such A(z) and a. (If f (z) diverges as z → −∞ exponentially or
more rapidly, we have A(z) = C exp[−|V (z)|] with a constant C. Otherwise, we may take
A(z) = e−2a sin θ(x−z), θ = arg k.) So (6.5) holds for any f (x) as long as hNm is finite.

(ii) |k| → ∞ with fixed Im k > 0.
Let b ≡ Im k > 0. In this case, τ(x, z; k) approaches eik(x−z) as |k| → ∞. (See
(6.1).) Let us first consider the case m = 0 in (6.5). From (6.2) it is obvious that
|τ 2(x, z; k) − e2ik(x−z)| � 2 e−2b(x−z). So, if

∫ x

−∞ |hN0(z)| e2bz dz < ∞, then it is permissible
to replace the τ 2 by e2ik(x−z) within the integral:

lim
|k|→∞

∫ x

−∞
τ 2(x, z)hN0(z) dz = lim

| Rek|→∞

∫ x

−∞
e−2i(Rek)(z−x) e2b(z−x)hN0(z) dz. (6.7)

The right-hand side of (6.7) vanishes according to the Riemann–Lebesgue theorem.
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In the same way, we can show that (6.5) holds for any m if
∫ x

−∞ |hNm(z)| e2bz dz < ∞.

(The problem is easier for m �= 0, since Rm
l → 0 as |k| → ∞.) Since hNm is a polynomial in

f and its derivatives, this condition is satisfied for any {n,m} if f (−∞) is finite, or if f (z)

tends to infinity more slowly than any exponential function as z → −∞.

(iii) |k| → ∞ with Im k = 0.
The above argument is also applicable to the case b = 0. If

∫ x

−∞ |hNm(z)| dz < ∞, then (6.5)
holds. If f (z) falls off with a power law or faster, this condition is satisfied for sufficiently
large N. This implies that (5.14) holds for any N for such f (z).

If f (z) goes to zero more slowly than any power of |z|, then (6.5) cannot be proved by the
above method. However, (6.5) holds in this case, too. When (−z) is large, τ 2(x, z)Rm

l (x, z)

has the approximate form (see (A.5) and (A.7) with ξ = 0)

τ 2(x, z)Rm
l (x, z) � C2(x, k)Dm(x, k) e2(1+m) i[−kz+θ(z,k)], (6.8)

where θ(z, k) is a real function which is o(|z|) as z → −∞ and o(1) as |k| → ∞. It can be
shown that |C(x, k)| = 1 + O(1/|k|2) and D(x, k) = O(1/|k|) as |k| → ∞. For sufficiently
large (−z1), we can evaluate∫ z1

−∞
τ 2Rm

l hnm dz � iC2(x, k)Dm(x, k)

2(1 + m)k
e2(1+m) i[−kz1+θ(z1,k)]hnm(z1). (6.9)

The right-hand side vanishes like 1/|k|1+m in the limit |k| → ∞. Whereas (6.8) is an
approximation, we can show that the part omitted on the right-hand side of (6.9) is of higher
order than 1/|k|1+m. Hence we may conclude that (6.5) holds if f (−∞) = 0.

In the same way, it can be shown that (6.5) also holds when f (−∞) = c( �= 0,±∞). (In
this case Rr has branch cuts along the real axis. So we need to replace k by k + iε with positive
ε, and let ε → 0 after evaluating the integral.)

Thus, we have shown that (5.14) holds under the stated conditions. The conditions for the
validity of the asymptotic expansion (5.16) are obtained by replacing the phrase ‘f (N−1)(x) is
continuous and piecewise differentiable’ by ‘f (x) is infinitely differentiable’. Let us remark
that these are sufficient conditions, not necessary ones. There are cases where (5.16) is
valid even though f (x) is not infinitely differentiable, and even though (5.13) is not well
defined. When the potential is a piecewise analytic function, the expansion (5.16) is correct
for 0 < arg k < π if the point x is away from the singularities. In such cases the effect of the
singularities falls off exponentially as Im k → ∞, and so (5.16) is not affected. (See example 8
of section 7.)

7. Examples

For some simple potentials, it is possible to obtain the exact form of Rr(x,−∞; k). In
this section, we shall compare the exact expressions with the results of our high-energy and
low-energy expansions. We omit the derivation of the exact results.

Example 1. V (x) = −2x, f (x) = 1.

Our first example is a linear potential. The exact form of Rr for this V (x) is

Rr(x,−∞; k) = ik +
√

1 − k2 = ik
[
1 −
√

1 − (1/k)2
]
, (7.1)

which is independent of x. Since f (x) is a constant, the cn obtained from (5.12) are also
x-independent. Obviously c2 = c4 = c6 = · · · = 0, and (5.16) reads

Rr = − 1

2ik
+

1

(2ik)3
− 2

(2ik)5
+

5

(2ik)7
− 14

(2ik)9
+ · · · . (7.2)
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It is obvious that (7.2) is the correct expansion of (7.1). Since the only singularities of (7.1)
are the branch points at k = ±1, the series (7.2) is convergent for |k| > 1.

Putting V (x) = −2x in the definition (4.1), we have [−]x−∞ = 1
2 e2x, [−−]x−∞ =

1
2

(
[−]x−∞

)2 = 1
8 e4x, [− − +]x−∞ = 1

16 e2x , and so on. Substituting them into (4.19a), we
obtain the low-energy expansion

Rr = 1 + ik + 1
2 (ik)2 − 1

8 (ik)4 + 1
16 (ik)6 + · · · , (7.3)

which is obviously the correct expansion of (7.1). This series is convergent for |k| < 1.

Example 2. V (x) = x2, f (x) = −x.

The next example is a parabolic potential. The exact form of the reflection coefficient
for this potential can be expressed in terms of the confluent hypergeometric function
F(α, γ ; z) =∑∞

n=0
α(α+1)···(α+n−1)

γ (γ +1)···(γ +n−1)
1
n!z

n and the gamma function. We have

Rr(x,−∞; k) = a(x, k)

a(x,−k)
, (7.4)

a(x, k) ≡ �

(
1 − k2

4

)[
F

(
−k2

4
,

1

2
; x2

)
+ ikxF

(
1 − k2

4
,

3

2
; x2

)]

+ (ik/2)�

(
1

2
− k2

4

)[
F

(
1

2
− k2

4
,

1

2
; x2

)
+ ikxF

(
1

2
− k2

4
,

3

2
; x2

)]
. (7.5)

The high-energy expansion obtained from (5.16) and (5.12) is

Rr = x

2ik
+

1

(2ik)2
− x3

(2ik)3
− 5x2

(2ik)4
+

2x5 − 11x

(2ik)5
+ · · · . (7.6)

Using the asymptotic forms of F(α, γ ; z) and �(z), we can show that (7.6) is the correct
asymptotic form of (7.4) as |k| → ∞ with 0 < arg k < π (figure 1(a)). The series (7.6) is
divergent in this case. This asymptotic expression also holds in the case where |k| → ∞ with
fixed Im k > 0 (figure 1(b)). However, (7.6) does not hold when Im k = 0. In that case the
exact Rr(k) oscillates and does not tend to zero as |k| → ∞ (figure 1(c)).

The coefficients of the low-energy expansion of Rr for this potential are also obtained
from (4.19a). We have [−]x−∞ = ∫ x

−∞ e−z2
dz = (

√
π/2) erfc(−x), where erfc z is the Gauss

error function. Substituting this into (4.19a), we obtain

Rr = 1 +
√

π ex2
erfc(−x)ik +

π

2
e2x2

[erfc(−x)]2(ik)2 + · · · (7.7)

(see figure 1). The Rr(k) given by (7.4) has poles in the lower half-plane. The series (7.7) is
convergent if |k| is smaller than the distance from the origin to the nearest pole.

Example 3. V (x) = e−x, f (x) = 1
2 e−x.

This is an exponential potential, which tends to infinity as x → −∞ more rapidly than the
previous examples. The exact Rr has the form

Rr(x,−∞; k) = i
J−ν(−i e−x/2) − i e−kπJν(−i e−x/2)

J1−ν(−i e−x/2) + i e−kπJν−1(−i e−x/2)
, ν ≡ ik +

1

2
, (7.8)

where Jα(z) is the Bessel function. The high-energy expression (5.16) now reads

Rr = − e−x

4ik
+

e−x

2(2ik)2
− 4 e−x − e−3x

8(2ik)3
+

4 e−x − 5 e−3x

8(2ik)4
+ · · · . (7.9)
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(a)

(b)

(c)

Figure 1. The real and imaginary parts of Rr(x0,−∞; k) for the potential V (x) = x2 (example 2),
where x0 = −2. They are plotted along three different lines in the complex k plane:
(a) arg k = π/4; (b) Im k = 1/2; (c) Im k = 0. In (a) and (b), the abscissa is |k| and Re k,
respectively. Solid lines: the exact Rr (equation (7.4)); broken lines: the low-energy expansion
(7.7) up to order k2; dashed lines: the high-energy expansion (7.6) up to order 1/kN (N = 2
and 6).

As |k| → ∞ with arg k fixed in the region 0 < arg k < π , the Rr given by (7.8) has the
asymptotic form (7.9). However, this expression does not hold when Im k is kept fixed.
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Using (4.19a) we obtain the low-energy expansion for this potential as

Rr = 1 − 2 exp(e−x)Ei(−e−x)ik + 2 exp(2 e−x)[Ei(−e−x)]2(ik)2 + · · · , (7.10)

where Ei(z) = − ∫∞
−z

(1/t) e−t dt is the exponential integral function.

Example 4. V (x) = ex, f (x) = − 1
2 ex.

This potential falls off rapidly as x → −∞. The exact Rr for this V (x) is

Rr(x,−∞; k) = −i
J1−ν(−i ex/2)

J−ν(−i ex/2)
, ν ≡ ik +

1

2
. (7.11)

From (5.16) and (5.12) we have

Rr = ex

4ik
+

ex

2(2ik)2
+

4 ex − e3x

8(2ik)3
+

4 ex − 5 e3x

8(2ik)4
+ · · · . (7.12)

This is the correct asymptotic expansion of (7.11). Unlike the previous example, this expansion
is valid even when Im k = 0. (See figure 2(a).)

The low-energy expansion for this potential is correctly given by (4.18) with (4.19c):

Rr = − tanh
ex

2
−
(

sech
ex

2

)2

Shi( ex)ik

− 2

(
sech

ex

2

)3
[∫ ex

0

cosh
(
y − 1

2 ex
)

y
Shi(y) dy

]
(ik)2 + · · · , (7.13)

where Shi(z) = ∫ z

0 (1/t) sinh t dt is the hyperbolic sine integral function (figure 2(a)). The
radius of convergence of (7.13) is larger than 1/2, and it approaches 1/2 as x → −∞.

Example 5. V (x) = 2 log cosh x, f (x) = − tanh x.

This is another example of a potential that grows linearly as x → −∞. The exact
form of the reflection coefficient is expressed in terms of the hypergeometric function
F(α, β, γ ; z) = �(γ )

�(α)�(β)

∑∞
n=0

�(α+n)�(β+n)

�(γ +n)
1
n!z

n. We define

η(x, k) ≡ F

(
α, β,

1

2
;− sinh2 x

)

+ 2
�
(

1
2 + α
)
�(1 − β)

�(α)�
(

1
2 − β
) sinh xF

(
α +

1

2
, β +

1

2
,

3

2
;− sinh2 x

)

with α ≡ 1
2

[− 1 − ik
√

1 − (1/k)2
]
, β ≡ 1

2

[− 1 + ik
√

1 − (1/k)2
]
. Then we have

Rr(x,−∞; k) = ikη(x, k) + η′(x, k)

ikη(x, k) − η′(x, k)
, (7.14)

where η′ = ∂η/∂x. The high-energy expansion (5.16) now takes the form

Rr = tanh x

2ik
+

(sech x)2

(2ik)2
− (3 + cosh 2x)(sech x)2 tanh x

2(2ik)3
− (3 + cosh 2x)(sech x)4

2(2ik)4

+
(11 + 8 cosh 2x + cosh 4x)(sech x)4 tanh x

4(2ik)5
+ · · · . (7.15)

As shown in figure 2(b), this is the correct large-|k| expansion of (7.14) for Im k � 0. As in
example 1, the series (7.15) is convergent for |k| > 1.
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Figure 2. The real and imaginary parts of Rr(x0, −∞; k) as functions of real k. (a) (example 4)
V (x) = e−x ; x0 = 0. Solid lines: the exact Rr (equation (7.11)); broken lines: the low-energy
expansion (7.13) up to order k2; dashed lines: the high-energy expansion (7.12) up to order 1/kN

(N = 2 and 6). (Since k is real, ‘N = 2’ and ‘N = 6’ are, respectively, in effect N = 1 and
N = 5 for Im Rr .) (b) (example 5) V (x) = 2 log cosh x; x0 = −1/2. Solid lines: the exact Rr

(equation (7.14)); broken lines: the low-energy expansion (7.16) up to order kN (N = 2 and 4);
dashed lines: the high-energy expansion (7.15) up to order 1/kN (N = 2, 6 and 14). Note that the
exact Rr is singular at k = 1. (c) (example 6) V (x) = √−x; x0 = −1. Solid lines: the exact Rr

(equation (7.17)); broken lines: the low-energy expansion (7.19) up to order k2; dashed lines: the
high-energy expansion (7.18) up to order 1/k2.
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Figure 3. Domains of validity of the low-energy expansion (4.18) and the high-energy expansion
(5.16), where the limit |k| → ∞ is taken with: (i) fixed arg k (0 < arg k < π); (ii) fixed Im k > 0;
(iii) Im k = 0.

Calculating (4.19a) for this potential, we obtain the low-energy expansion

Rr = 1 + 2(cosh x) ex ik + 2(cosh x)2 e2x(ik)2 + [2(cosh x)3 e3x − (cosh x)2 e2x](ik)3

+ [2(cosh x)4 e4x − 4(cosh x)4 e2x + 2(cosh x)3 ex](ik)4 + · · · . (7.16)

This is the correct small-|k| expansion of (7.14), as can be seen from figure 2(b).

Example 6. V (x) = √−x, f (x) = 1
4

1√−x
. (xmax = 0).

In this example, V (x) slowly tends to infinity as x → −∞, while f (x) slowly converges to
zero. The exact Rr(x,−∞)(x < 0) has the form

Rr(x,−∞; k) = b(x, k)

a(x, k)
,

a(x, k) ≡ 2�(α + 1)F

(
α,

1

2
; 2ikx

)
− 1

4

( i

2k

)1/2
�

(
α +

1

2

)√−xF

(
α +

1

2
,

3

2
; 2ikx

)
,

b(x, k) ≡ −�(α + 1)
√−xF

(
α + 1,

3

2
; 2ikx

)
+

1

2

( i

2k

)1/2
�

(
α +

1

2

)
F

(
α +

1

2
,

1

2
; 2ikx

)
,

(7.17)

where α ≡ i/(32k). Expression (5.16) now reads

Rr = − (−x)−1/2

8ik
− (−x)−3/2

8(2ik)2
− (x + 12)(−x)−5/2

64(2ik)3
− (5x + 60)(−x)−7/2

128(2ik)4
+ · · · . (7.18)

This is the high-energy asymptotic expansion of (7.17) which is valid as long as x < 0. This
expansion holds even for real k. (See figure 2(c).)
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The low-energy expansion is obtained from (4.19a) as

Rr = 1 + 4(1 +
√−x) ik + 8(1 +

√−x)2(ik)2 − 32(5 + 4
√−x − x)(ik)3

+ 32(−21 − 40
√−x + 26x + 8x

√−x − x2)(ik)4 + · · · . (7.19)

This is the correct asymptotic expansion of (7.17) (figure 2(c)). Unlike examples 1–5, this
series is divergent; the Rr(k) given by (7.17) is essentially singular at k = 0.

Example 7. V (x) = α log(−x), f (x) = −α/(2x). (xmax = 0.)
Here α is a positive constant. This potential tends to infinity as x → −∞ even more slowly
than the previous one. The exact Rr(x,−∞)(x < 0) is expressed in terms of the Bessel
function as

Rr(x,−∞; k) = [Jν(−kx) + iJν−1(−kx)] − i eiαπ/2[J−ν(−kx) − iJ1−ν(−kx)]

[Jν(−kx) − iJν−1(−kx)] − i eiαπ/2[J−ν(−kx) + iJ1−ν(−kx)]
, (7.20)

where ν ≡ (1 + α)/2. From (5.16) and (5.12) we have

Rr = α

4x ik
− α

2x2(2ik)2
− α3 − 8α

8x3(2ik)3
+

5α3 − 24α

8x4(2ik)4
+ · · · . (7.21)

We can check that this high-energy expansion is correct even when Im k = 0.
On the other hand, the low-energy expression (4.18) for this V (x) reads

Rr = 1 + 2(−x)α ik
∫ x

−∞

1

(−z)α
dz + · · · , (7.22)

but the integral on the right-hand side is divergent if α � 1. From the exact expression (7.20)
we can see that the correct asymptotic form for α � 1 is

Rr = 1 − 21−α
�
(

1−α
2

)
�
(

1+α
2

) (−x)αkα + · · · , (7.23)

which includes a fractional power of k. If α > 1, then (7.22) is correct to order k, but the
expansion in integral powers of k fails at some higher order.

Example 8. Potential with a singularity. As an example of a potential that has a singularity
on the real axis, let us consider

V (x) =
{

e−x (x < 0)

1 − x (x > 0),
f (x) =

{
1
2 e−x (x < 0)

1
2 (x > 0).

(7.24)

In this case, f (x) is continuous and piecewise differentiable. The derivative of f (x) has a
jump at x = 0. The exact Rr(x,−∞) for x > 0 has the form

Rr(x,−∞; k) = −ik (A − 2) B + 1 + [−ik (A + 2) B − 1] eikAx

−ik (A + 2) + B + [−ik (A − 2) − B] eikAx
, (7.25)

A ≡
√

4 − (1/k2), B ≡ i
J−ν(−i/2) − i e−kπ/2Jν(−i/2)

J1−ν(−i/2) + i e−kπ/2Jν−1(−i/2)
, ν ≡ ik +

1

2
. (7.26)

(This B is the value of (7.8) at x = 0.) Now (5.16) and (5.12) yield the expansion

Rr = − 1

4ik
+

1

(4ik)3
− 2

(4ik)5
+

5

(4ik)7
+ · · · . (7.27)

If the limit |k| → ∞ is taken with 0 < arg k < π , then the eikAx in (7.25) falls off faster than
any power of 1/k, and we can show that (7.27) is the correct asymptotic expansion. (See the
comments at the end of section 6.) If Im k = 0, then the eikAx cannot be neglected; from
(7.25) it can be shown that (5.15) is correct for N = 1 but not for N � 2. This agrees with
the result of section 6. The low-energy expression (4.18) is valid irrespective of the presence
of the singularity.
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8. Summary

The generalized reflection coefficient for the semi-infinite interval, R̄r (x,−∞; ξ), is expressed
in form (3.15) in terms of the operators A and B defined by (3.1) and (3.2). Using the operator
equations (3.20a) and (3.20b), with L defined by (3.19), we can derive expansions of R̄r

in powers of k and 1/k, together with the remainder terms (equations (4.3) and (5.1)). For
either the low-energy or the high-energy expansion, the remainder term is expressed in terms
of the inverse operator (A − 2ikB)−1, and, according to (3.7), it can be written as integrals
involving the scattering coefficients ((4.13) and (5.9)). By using the asymptotic forms of the
scattering coefficients given in appendix A, we can study the behaviour of the remainder term
as k → 0 or |k| → ∞, and investigate whether the expansion is asymptotic or not. The results
are roughly summarized in figure 3. For the high-energy expansion, conditions concerning
differentiability of the potential must also be taken into account, as explained in section 6.
(The problem of whether the high-energy expansion is convergent or not is beyond the scope
of this paper.)

Appendix A. Asymptotic behaviour of τ̄ (x, y) and R̄l(x, y) as y → −∞
Here we summarize the asymptotic forms of τ̄ (x, y; ξ ; k) and R̄l(x, y; ξ ; k) as y → −∞
with fixed x, ξ and k (Im k � 0). (The derivation is omitted for space limitations.)

(i) f (−∞) = ±∞
In this case the asymptotic form of τ̄ (x, y) as y → −∞ is

τ̄ (x, y; ξ ; k) = C(x, ξ, k) exp
[− 1

2 |V (y)| + η(y, k)
]

[1 + o(1)], (A.1)

where η(y, k) = o(|y|) (y → −∞). If 1/f (y) = O(1/|y|1+ε) with some positive number ε,
then η(y, k) = O(1). In that case we may let η(−∞, k) be absorbed into the y-independent
quantity C, and redefine η to be identically zero. The R̄l behaves as

R̄l(x, y; ξ ; k) = ∓1 − ik

f (y)
[1 + o(1)], (A.2)

where the ∓1 on the right-hand side corresponds to f (−∞) = ±1, respectively.

(ii) f (−∞) = c (c �= 0,±∞)

When Re
√

c2 − k2 > 0 (i.e., Im k > 0 or Im k = 0, c2 > k2), we have, as y → −∞,

τ̄ (x, y; ξ ; k) = C(x, ξ, k) exp
[√

c2 − k2y + η(y, k)
]
[1 + o(1)], (A.3)

R̄l(x, y; ξ ; k) = −1

c

(
ik +
√

c2 − k2
)

+ o(1), (A.4)

where η(y, k) = o(|y|). If f (y) = c+O(1/|y|1+ε) with some positive ε, then η(y, k) = O(1),
and so we may take η to be zero.

When k is real and k2 � c2, equations (A.3) and (A.4) do not hold. When evaluating an
integral like (3.7) in such cases, we need to add an imaginary part iε (ε > 0) to k, and let
ε → 0 afterwards. This is because R̄r (k) has branch cuts along the real axis.

(iii) f (−∞) = 0
In this case we have, as y → −∞,

τ̄ (x, y; ξ ; k) = C(x, ξ, k) exp[−iky + iθ(y, k)][1 + o(1)], k �= 0, (A.5)

where θ(y, k) = o(|y|). If f 2(y) = O(1/|y|1+ε), then we may let θ = 0. If Im k > 0, then

R̄l(x, y; ξ ; k) = o(1). (A.6)
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If Im k = 0, then R̄l(x, y) does not vanish but oscillates as y → −∞:

R̄l(x, y; ξ ; k) = D(x, ξ, k) exp [−2iky + 2iθ(y, k)] + o(1), k �= 0, (A.7)

where D(x, ξ, k) is another quantity independent of y. The θ(y, k) in (A.7), which is the
same one as in (A.5), is a real quantity when k is real.

Appendix B. Proof of (3.8) with (3.7)

We are assuming that g(x, ξ) is an analytic function of ξ in −1 < ξ < 1, as mentioned at the
beginning of section 5. So we may expand g/(1 − ξ 2) in powers of ξ and write

g(x, ξ) ≡ (1 − ξ 2)

∞∑
n=0

ξnhn(x). (B.1)

We consider each term of (B.1) separately. Calculating with (3.1) and (3.2), we have

(A − 2ikB)(1 − ξ 2)ξnhn(x)

= (1 − ξ 2)

{
ξn dhn(x)

dx
+ [nξn−1 − (n + 2)ξn+1]f (x)hn(x) − 2(n + 1) ikξnhn(x)

}
. (B.2)

Let us apply (A − 2ikB)−1 given by (3.7) to the first term on the right-hand side:
1

A − 2ikB
(1 − ξ 2)ξn dhn(x)

dx
=
∫ x

−∞
τ̄ 2(x, z; ξ)R̄n

l (x, z; ξ)
dhn(z)

dz
dz

= τ 2(x, z; ξ)R̄n
l (x, z; ξ)hn(z)|z=x

z=−∞

−
∫ x

−∞

∂

∂z
[τ̄ 2(x, z; ξ)R̄n

l (x, z; ξ)]hn(z) dz. (B.3)

It can be shown that τ and Rl satisfy the differential equations [11]

∂

∂z
τ̄ (x, z) = −ikτ̄ (x, z) − f (z)τ̄ (x, z)R̄l(x, z), (B.4)

∂

∂z
R̄l(x, z) = −2ikR̄l(x, z) + f (z)

[
1 − R̄2

l (x, z)
]
. (B.5)

Using (B.4) and (B.5), we can rewrite the integral in the last expression of (B.3) as∫ x

−∞

∂

∂z

[
τ̄ 2(x, z; ξ)R̄n

l (x, z; ξ)
]
hn(z) dz

=
∫ x

−∞
τ̄ 2 [nR̄n−1

l − (n + 2)R̄n+1
l

]
f hn dz − 2(n + 1) ik

∫ x

−∞
τ̄ 2R̄n

l hn dz

= 1

A − 2ikB
(1 − ξ 2){[nξn−1 − (n + 2)ξn+1]f (x)hn(x) − 2(n + 1) ikξnhn(x)}.

(B.6)

From (B.2), (B.3) and (B.6) we have
1

A − 2ikB
(A − 2ikB)(1 − ξ 2)ξnhn(x) = τ̄ 2(x, z; ξ)R̄n

l (x, z; ξ)hn(z)|z=x
z=−∞. (B.7)

Taking the sum over n and using definition (B.1) gives

1

A − 2ikB
(A − 2ikB)g(x, ξ) = τ̄ 2(x, z; ξ)

1 − R̄2
l (x, z; ξ)

g(z, R̄l(x, z; ξ))|z=x
z=−∞. (B.8)

If (3.6) is satisfied, then we can easily see, by using (2.2), that the right-hand side of (B.8) is
equal to g(x, ξ). Thus (A − 2ikB)−1(A − 2ikB)g = g holds.
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Appendix C. Proof of (3.13)

With g = R̄r + ξ , the expression to the right of the limit symbol in (3.6) reads

τ̄ 2(x, z; ξ)

1 − R̄2
l (x, z; ξ)

[
Rr(z,−∞) − R̄l(x, z; ξ)

1 − Rr(z,−∞)R̄l(x, z; ξ)
+ R̄l(x, z; ξ)

]
= τ̄ 2(x, z; ξ)Rr(z,−∞)

1 − Rr(z,−∞)R̄l(x, z; ξ)
.

From (A.1), (A.3) and (A.5), we can see that limz→−∞ τ̄ (x, z) = 0 if f (−∞) = ±∞ or
Im k > 0. On the other hand, if f (−∞) = 0 then limz→−∞ Rr(z,−∞) = 0. Therefore, the
right-hand side vanishes in the limit z → −∞ for all k with Im k � 0, except in the case
f (−∞) = c( �= 0,±∞) with Im k = 0. (For this exceptional case, see the comment in (ii) of
appendix A.)

Appendix D. Explicit forms of (4.12) and the remainder terms

The right-hand sides of (4.12a) and (4.12b) can be explicitly calculated. The result is

C±
s1,s2,...,sn−1

(W) = c±
s1,...,sn−1

exp

[(
±1 −

n−1∑
i=1

si

)
W

]
, (D.1)

c±
s1,...,sn−1

≡ ±2
n−1∏
j=1

[
∓sj

(
1 ∓

j∑
k=1

sk

)]
. (D.2)

The expression for Ds1,s2,...,sn−1(W) can be written in the form

Ds1,s2,...,sn−1(W) = sechn+1[(V0 − W)/2]
n−1∑

m=−n+1

ds1,...,sn−1;m exp

(
1

2
mW

)
. (D.3)

where ds1,...,sn−1;m are constants. (We omit writing out the expressions for them.)
Substituting (4.11) (with (D.1) and (D.3)) into (4.14) and (4.13), we may write

ρ̄n = (ik)n+1
∑

{s1,...,sn}

∫ x

−∞

τ̄ 2(x, z)

1 − R̄2
l (x, z)

P +
s1,...,sn

(x, z)

× [−1, s1, s2, . . . , sn−1]z−∞ esnV (z) dz, V (−∞) = +∞,

= (ik)n+1
∑

{s1,...,sn}

∫ x

−∞

τ̄ 2(x, z)

1 − R̄2
l (x, z)

P −
s1,...,sn

(x, z)

× [+1, s1, s2, . . . , sn−1]z−∞ esnV (z) dz, V (−∞) = −∞,

= (ik)n+1
∑

{s1,...,sn}

∫ x

−∞

τ̄ 2(x, z)

1 − R̄2
l (x, z)

Qs1,...,sn
(x, z)

× (±, s1, s2, . . . , sn−1]z−∞ esnV (z) dz, V (−∞) = V0, (D.4)

where

P ±
s1,s2,...,sn

(x, z) = c±
s1,...,sn

[
1 + R̄l(x, z)

1 − R̄l(x, z)

]±1−∑n
i=1 si

exp

[(
±1 −

n∑
i=1

si

)
V (z)

]
, (D.5)
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Qs1,s2,...,sn
(x, z) =

[
1 − R̄2

l (x, z)
](n/2)+1

{
cosh 1

2 [V (z) − V0] + R̄l(x, z) sinh 1
2 [V (z) − V0]

}n+2

×
n∑

m=−n

ds1,...,sn;m

[
1 + R̄l(x, z)

1 − R̄l(x, z)

]m/2

exp

[
1

2
mV (z)

]
. (D.6)

Appendix E. Finiteness of ρ̄N and δ̄N

The domain of (A − 2ikB)−1 is the range of A − 2ikB with its domain restricted to �
[V ]
k . It

is obvious that Ar̄N+1 belongs to the domain of (A − 2ikB)−1 if r̄0 + ξ and r̄1, r̄2, . . . , r̄N

all belong to �
[V ]
k . Namely, if r̄0 + ξ and r̄n (1 � n � N) satisfy condition (3.6), then (4.5)

makes sense and is finite. Using the asymptotic forms of τ̄ and R̄l given in appendix A, and
the expressions for r̄n given by (4.11) with (D.1) and (D.3), we can show that these conditions
are satisfied as long as the r̄n are finite. (When k is a nonzero real number, we need to be
careful in the following two cases: the case f (−∞) = c with k2 > c2 �= 0, and the case
where f (−∞) = 0 and V (−∞) = ±∞. In these cases, the value of the integral (4.13) is
indeterminate. So we need to replace k by k + iε with positive infinitesimal ε, and let ε → 0
after evaluating the integral. Then the integral takes a definite value, and expression (4.3) is
well-defined.)

Similarly, Bc̄N+1 lies in the domain of (A − 2ikB)−1 if c̄1, c̄2, . . . , c̄N belong to �
[V ]
k . It

is easy to see that this condition is satisfied as long as c̄1, . . . , c̄N are finite.

Appendix F. Verification of (4.21)

Here we study the cases V (−∞) = +∞ and V (−∞) = V0. The former is divided into
two subcases, f (−∞) �= 0 and f (−∞) = 0. We omit the case V (−∞) = −∞, which is
essentially the same as the case V (−∞) = +∞.

(i)-A V (−∞) = +∞, f (−∞) �= 0
The first equation of (D.4) has the form

ρ̄n = (ik)n+1
∫ x

−∞
Bn(z, k)τ̄ 2(x, z; k) dz. (F.1)

(In this appendix, we regard x and ξ as fixed constants.) Using (A.2), (D.5) and (D.2), we can
show that Bn(z, k) tends to a finite value as z → −∞.

When f (−∞) = +∞ or f (−∞) = c �= 0, the behaviour or τ̄ (x, z) as z → −∞ is
given by (A.1) or (A.3). In either case there exist real constants C1, C2, and k1 such that
|τ̄ 2(x, z; k)| � C1 e−V (z)+C2z for z < x and |k| < k1. Using this, we can easily show

lim
k→0

∫ x

−∞
Bn(z, k)τ̄ 2(x, z; k) dz =

∫ x

−∞
lim
k→0

Bn(z, k)τ̄ 2(x, z; k) dz, (F.2)

which is equivalent to the second equality of (4.21).

(i)-B V (−∞) = +∞, f (−∞) = 0
If V (x) tends to infinity more slowly than |x| as x → −∞, the asymptotic behaviour or
τ̄ (x, z) is given by (A.5). The quantity Bn(z, k) of (F.1) becomes infinite as z → −∞ for
n � 1. We can show that Bn does not grow faster than |z|n, i.e., Bn(z, k) = o(|z|n).

Here we give only a sketchy explanation. Let f (z) be monotone for z < z1. For any
k satisfying |k| < |f (z1)|, there exists a value za(k)(< z1) such that |k| = |f (za)|. As
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k approaches zero, this za tends to −∞. Let k be sufficiently small. Then τ̄ (x, z; k) �
τ̄ (x, z; k = 0) for z 
 za , and τ̄ (x, z; k) � τ̄ (x, za; k = 0) exp[−ik(z− za)+ · · ·] for z � za .
Using Bn(z, k) = o(|z|n), we have the estimate

lim
k→0

∣∣∣∣
∫ za(k)

−∞
Bn(z, k)τ̄ 2(x, z; k) dz

∣∣∣∣ < C lim
k→0

e−2V (za(k))

kn+1
= C lim

za→−∞
e−2V (za)

f n+1(za)
, (F.3)

where C is a constant. The last expression of (F.3) vanishes if V (z) tends to infinity faster
than log |z| as z → −∞. Hence we can see that (F.2) holds even in this case.

(ii) V (−∞) = V0 �= ∞
Let us consider each integral in the last expression of (D.4). From (A.5), (A.6) and (D.6), we
can see that there exist constants C and k1 such that∣∣∣∣ τ̄ 2(x, z; k)

1 − R̄2
l (x, z; k)

Qs1,...,sn
(x, z; k)

∣∣∣∣ � C (F.4)

for any z < x and |k| < k1. Thus, the integrand in the last expression of (D.4) is absolutely
dominated by C(±, s1, s2, . . . , sn−1]z−∞ esnV (z), which is a k-independent function of z. The
integral of this function is C(±, s1, s2, . . . , sn−1, sn]x−∞, which is finite if the potential satisfies
condition (4.15b). Therefore we can interchange the limit k → 0 and the integral in (D.4),
and so the second equality of (4.21) holds.
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